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Abstract
By using the Lewis–Riesenfeld quantum invariant theory and properly choosing
Hermitian invariant operator, a closed solution of the Schrödinger equation is
derived for two forced quantum oscillators with mixing of two modes, and the
quantum fluctuations in the output fields are evaluated. For the initial two-mode
squeezed number or squeezed coherent state, in some particular conditions,
the time evolution of the oscillators can not only preserve the initial two-mode
squeezing, but also produce squeezing in the individual modes; and exhibit
a periodical squeezing behaviour. For the initial two-mode number state or
coherent state, there is no squeezing in the individual and mutual quadrature
phases of the two-mode fields. Furthermore, regardless of which state above
being initially considered, the quantum fluctuations of all the quadrature phases
in the output fields are all independent of the driving parameters. In particular,
for the initial two-mode coherent state, the variances of the output fields are
also independent of other parameters in the Hamiltonian, and always preserve
their initial values 1/4.

PACS numbers: 42.65.Sf, 42.50.Lc, 42.65.Ky, 03.65.−w

1. Introduction

The model of two coupled time-dependent harmonic oscillators has received much attention
due to its applications in quantum mechanics and quantum optics. For instance, it has been
used to study photon statistics, squeezing, entanglement and the exchange of nonclassical
properties between two modes of the electromagnetic field in optical parametric processes
[1–16]. The model has been solved in various cases by adopting the Heisenberg equations of
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motion [1–9], Lie-group method [12, 13], the entangled state representation [14] etc. However,
in the literature above, most of the systems or models were investigated only in those cases:
namely, either the two-mode coupled term or the driving term of the Hamiltonians is zero, and
the parameters of the Hamiltonians are partially time-dependent. Recently, by virtue of the
Lewis–Riesenfeld invariant theory, a model has been developed [18] to describe a generalized
non-degenerate optical parametric down conversion, whose Hamiltonian contains the above
two terms which are arbitrarily time-dependent. Indeed, the Lewis–Riesenfeld invariant theory
has proved powerful in analyzing the quantum mechanical behaviours and been applied to
various time-dependent problems of quantum mechanics and quantum optics [18–28]. In this
work, we shall solve two forced quantum oscillators with mixing of two modes by the theory
of invariants, and investigate the quantum fluctuation of the output fields.

2. The dynamical system

The Hamiltonian of the time-dependent system in this study is (in natural units h̄ = c = 1)

Ĥ = Ĥ 0 + Ĥ 1 + Ĥ 2 (2.1a)

Ĥ 0 =
2∑

j=1

ωj(t)â
+
j âj + G0(t) (2.1b)

Ĥ 1 =
2∑

j=1

Gj(t)
[
â+

j exp(iϕj (t)) + âj exp(−iϕj (t))
]

(2.1c)

Ĥ 2 = Q12(t)
[
â+

1 â2 exp(iϕ12(t)) + â1â
+
2 exp(−iϕ12(t))

]
. (2.1d)

Here âj and â+
j are the annihilation and creation operations for the mode j (j = 1, 2, j is

assigned the same values in what follows), respectively, and satisfy the following commutation
relations [

âj , â
+
k

] = δjk, [âj , âk] = [
â+

j , â+
k

] = 0 (j, k = 1, 2), (2.2)

where ωj(t), Q12(t), ϕ12(t), G0(t), Gj(t) and ϕj (t) are arbitrary real functions of time;
Ĥ 0 is the free Hamiltonian for the two-mode field; Ĥ 1 is referred to as the driving term,
Gj(t) exp(iϕj (t)) can be regarded as a classical generalized driving force acting on the mode j
[7]; Ĥ 2 describes the mixing of two modes [8], Q12(t) and ϕ12(t) are arbitrary pump coupling
parameters. When Gj = 0, Q12(t) = λ and ϕ12(t) = νt − φ, the Hamiltonian (2.1) reduces
to the model in [15] or [6] (ν = ωL, φ = 0), which corresponds to the up-conversion process.
When Gj = 0, Q12(t) = λγ (t) and ϕ12(t) = 0, Hamiltonian (2.1) reduces to the model of the
article [16], which can be used to study the exchange of nonclassical properties. When Gj �= 0
and Q12(t) = 0, the Hamiltonian (2.1) corresponds to the forced quantum oscillators subject
to transient classical driving force [29]. When all parameters are arbitrarily time-dependent
functions, the Hamiltonian (2.1) may describe two forced quantum oscillators coupled by
some interactions which cause two-mode mixing in quantum optics. Hereinafter, we will try
to solve the Schrödinger equation for this general situation.

3. Solving the Schrödinger equation via time-independent invariant

The time evolution of the quantum states is governed by the Schrödinger equation

i
∂

∂t
|ψ(t)〉 = Ĥ (t)|ψ(t)〉 (3.1)
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According to the Lewis–Riesenfeld invariant theory [17], an operator Î (t) that obeys the
following invariant equation

∂

∂t
Î (t) − i[Î (t), Ĥ (t)] = 0 (3.2)

is called an invariant whose eigenvalue is time-independent. In this study, we construct
the Hermitian invariant by using unitary transformation of Hermitian operator K̂0 =∑2

j=1 Cj â
+
j âj , i.e.

Î (t) = D̂1(z1(t))D̂2(z2(t))V̂ (ς(t)) · (C1â
+
1 â1 + C2â

+
2 â2

)
V̂ +(ς(t))D̂+

2(z2(t))D̂
+
1(z1(t)),

(3.3)

where C1 and C2 are arbitrary real constants. When C1 = C2 = 1, 〈Î (t)〉 corresponds
to the sum of the photon numbers in the two modes, which maintains conservation in the
evolution of a quantum system; and then the Hamiltonian (2.1) can describe a generalized
frequency conversion process; when C1 = −C2 = 1 and Gj(t) = 0, the Hamiltonian (2.1)
is equivalent to the model of article [16], which may be used to study the transference of a
kind of nonclassical properties between two interacting modes of light. And besides, in (3.3),
D̂j (zj (t)) is the displacement operator for mode j defined by

D̂j (zj (t)) = exp
[
zj (t))â

+
j − z∗

j (t))âj

]
(3.4a)

V̂ (ς(t)) is the two-mixed operator given by

V̂ (ς) = exp
[
ς∗(t)â+

1 â2 − ς(t)â1â
+
2

]
, (3.4b)

where

zj (t) = rj (t) exp(iδj (t)) (3.5a)

ς(t) = r12(t) exp(iδ12(t)). (3.5b)

Parameters rj (t), δj (t), r12(t) and δ12(t) are the real functions of time. For brevity, zj (t),
r12(t) and δ12(t) are rewritten as zj , r12 and δ12 (when t = 0, denoted as zj0, r120, and δ120),
and may be determined by (2.1) and (3.2). By using the following relational expressions
(omitting their Hermitian conjugate formats) [16],

D̂j (zj )âj D̂
+
j (zj ) = âj − zj (3.6a)

V̂ (ς)â1V̂
+(ς) = â1 cos r12 − â2 exp(−iδ12) sin r12 (3.6b)

V̂ (ς)â2V̂
+(ς) = â2 cos r12 + â1 exp(iδ12) sin r12, (3.6c)

(3.3) becomes

Î (t) =
2∑

j=1

(
gωj

â+
j âj + gj âj + g∗

j â
+
j

)
+ q12â1â

+
2 + q∗

12â
+
1 â2 + g0. (3.7)

From (2.1) and (3.7), we obtain the following commutation relation

[Î (t), Ĥ (t)] =



2∑
j=1

{
gjGj (t) exp(iϕj (t)) +

[
gωj

Gj (t) exp(iϕj (t))

− g∗
j ωj (t)

]
â+

j

}
+ [q∗

12G2(t) exp(iϕ2(t)) − g∗
2Q12(t) exp(iϕ12(t))]â

+
1

+ [q12G1(t) exp(iϕ1(t)) − g∗
1Q12(t) exp(−iϕ12(t))]â

+
2

+
[(

gω1 − gω2

)
Q12(t) exp(iϕ12(t)) + q∗

12(ω2(t) − ω1(t))
]
â+

1 â2

+ q∗
12Q12(t) exp(−iϕ12(t))

(
â+

1 â1 − â+
2 â2

)

 − h.c. (3.8)
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where h.c. stands for Hermitian conjugate, and

gω1 = c1 cos2 r12 + c2 sin2 r12 (3.9a)

gω2 = c2 cos2 r12 + c1 sin2 r12 (3.9b)

q12 = 1
2 (c2 − c1) eiδ12 sin 2r12, (3.9c)

g1 = −z∗
1(c1 cos2 r12 + c2 sin2 r12) + 1

2 (c1 − c2)z
∗
2 eiδ12 sin 2r12 (3.10a)

g2 = −z∗
2(c2 cos2 r12 + c1 sin2 r12) + 1

2 (c1 − c2)z
∗
1 e−iδ12 sin 2r12 (3.10b)

g0 = z1z
∗
1(c1 cos2 r12 + c2 sin2 r12) + z2z

∗
2(c2 cos2 r12 + c1 sin2 r12)

+ 1
2 (c2 − c1) sin 2r12(z1z

∗
2 eiδ12 + z∗

1z2 e−iδ12). (3.10c)

Substituting (3.7) and (3.8) into (3.2), we obtain the following equations (omitting their
conjugate equations):

i
d

dt
gω1 + Q12(t)[q

∗
12 exp(−iϕ12(t)) − q12 exp(iϕ12(t))] = 0 (3.11a)

i
d

dt
gω2

+ Q12(t)[q12 exp(iϕ12(t)) − q∗
12 exp(−iϕ12(t))] = 0 (3.11b)

i
d

dt
q12 + q12[ω1(t) − ω2(t)] + Q12(t)

(
gω2 − gω1

)
exp(−iϕ12(t)) = 0 (3.11c)

i
d

dt
g0 + G1(t)[g1 exp(iϕ1(t)) − g∗

1 exp(−iϕ1(t))] + G2(t)[g2 exp(iϕ2(t))

− g∗
2 exp(−iϕ2(t))] = 0 (3.12a)

i
d

dt
g1 + g1ω1(t) + Q12(t)g2 exp(−iϕ12(t)) − G1(t)gω1

exp(−iϕ1(t))

−G2(t)q12 exp(−iϕ2(t)) = 0 (3.12b)

i
d

dt
g2 + g2ω2(t) + Q12(t)g1 exp(iϕ12(t)) − G2(t)gω2 exp(−iϕ2(t))

−G1(t)q
∗
12 exp(−iϕ1(t)) = 0. (3.12c)

By substituting (3.9) into (3.11), we obtain two independent equations:

dr12

dt
= Q12(t) sin[δ12 + ϕ12(t)] (3.13a)

dδ12

dt
= ω1(t) − ω2(t) + 2Q12(t) cot 2r12 cos[ϕ12(t) + δ12]. (3.13b)

Now, we consider the case of the frequency converter: Q12(t) = Q12, ω1(t) = ω1 and
ω2(t) = ω2, where Q12, ω1 and ω2 are the time-independent pump coupling constant and
frequencies of signal and idler fields, respectively; ϕ12(t) = ωt , here ω is the frequency of
the pump field. For the case of perfect energy matching, we have ω = ω2 − ω1. Substituting
above parameters into (3.13), we can obtain a special solution of (3.13)

r12 = Q12t, δ12 = π/2 − ωt = π/2 + ω1t − ω2t. (3.14)

In general, for arbitrary time-dependent parameters, r12 and δ12 can be solved firstly from
(3.13), and then zj can be obtained by substituting them into (3.12). Moreover, r12 and δ12 are
dependent on the pump coupling parameters Q12(t) and ϕ12(t), but independent of the driving
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parameters Gj(t) and ϕj (t). Substituting the solution r12, δ12 and zj from (3.13) and (3.12)
into (3.7), we can obtain the time-dependent invariant Î (t).

Let |n1, n2〉 be the eigenstate vector of the operator K̂0, i.e.,

K̂0|n1, n2〉 = (C1n1 + C2n2)|n1, n2〉. (3.15)

From (3.3) and (3.15), it is seen that the states D̂1(z1)D̂2(z2)V̂ (ς)|n1, n2〉 are eigenstate vectors
of the operator Î (t), and proved to be complete by using expression

∑
n1,n2

|n1, n2〉〈n1, n2| = 1.
According to the Lewis–Riesenfeld quantum-invariant theory [17], the general solution of the
time-dependent Schrödinger equation (3.1) can be expressed as

|ψ(t)〉 =
∑
n1,n2

Cn1n2 exp
(
iαn1n2

)
D̂1(z1)D̂2(z2)V̂ (ς)|n1, n2〉, (3.16)

where αn1n2(t) is Lewis–Riesenfeld phase, and can be decomposed into geometric phase
γn1n2(t) and dynamical phase βn1n2(t), namely

αn1n2(t) = γn1n2(t) + βn1n2(t), (3.17a)

where

γn1n2(t) =
∫ t

0
〈n1, n2|V̂ +(ς)D̂+

2(z2)D̂
+
1(z1)i

∂

∂t
[D̂1(z1)D̂2(z2)V̂ (ς)]|n1, n2〉 dt (3.17b)

βn1n2(t) = −
∫ t

0
〈n1, n2|V̂ +(ς)D̂+

2(z2)D̂
+
1(z1)Ĥ (t)D̂1(z1)D̂2(z2)V̂ (ς)|n1, n2〉 dt. (3.17c)

By adopting the following relations (omitting their Hermitian conjugate formats)

V̂ +(ς)â1V̂ (ς) = â1 cos r12 + â2 exp(−iδ12) sin r12 (3.18a)

V̂ +(ς)â2V̂ (ς) = â2 cos r12 − â1 exp(iδ12) sin r12 (3.18b)

D̂+
j (zj )âj D̂j (zj ) = âj + zj (3.18c)

V̂ +(ς)i
∂

∂t
V̂ (ς) = 1

2
â1â

+
2 (δ̇12 sin 2r12 − i2ṙ12) exp(iδ12) + h.c − (

â+
1 â1 − â+

2 â2

)
δ̇12 sin2 r12,

(3.19)

a rather lengthy calculation yields the following results:

γn1n2 =
∫ t

0

[ i

2
(ż1z

∗
1 + ż2z

∗
2 − z1ż

∗
1 − z2ż

∗
2) − (n1 − n2)δ̇12 sin2 r12

]
dt (3.20a)

βn1n2 = −
∫ t

0
dt{[ω1(t)n1 + ω2(t)n2] cos2 r12 + [ω1(t)n2 + ω2(t)n1] sin2 r12

+ ω1(t)z1z
∗
1 + ω2(t)z2z

∗
2 + Q12(t)[z

∗
1z2 exp(iϕ12(t))

+ z1z
∗
2 exp(−iϕ12(t)) − (n1 − n2) cos(δ12 + ϕ12(t)) sin 2r12]

+ G1(t)[z
∗
1 exp(iϕ1(t)) + z1 exp(−iϕ1(t))] + G2(t)[z

∗
2 exp(iϕ2(t))

+ z2 exp(−iϕ2(t))] + G(t)}, (3.20b)

where żj = dzj

dt
, ṙ12 = dr12

dt
and δ̇12 = dδ12

dt
. Substituting (3.20) into (3.17a), we may write the

Lewis–Riesenfeld phase as

αn1n2 = −(ε1n1 + ε2n2) + σ, (3.21)
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where

ε1 =
∫ t

0
{δ̇12 sin2 r12 + ω1(t) cos2 r12 + ω2(t) sin2 r12 − Q12(t) cos[δ12 + ϕ12(t)] sin 2r12} dt

(3.22a)

ε2 =
∫ t

0
{−δ̇12 sin2 r12 + ω2(t) cos2 r12 + ω1(t) sin2 r12 + Q12(t) cos[δ12 + ϕ12(t)] sin 2r12} dt

(3.22b)

σ =
∫ t

0

{ i

2
(ż1z

∗
1 + ż2z

∗
2 − z1ż

∗
1 − z2ż

∗
2) − ω1(t)z1z

∗
1 − ω2(t)z2z

∗
2

− Q12(t)[z1z
∗
2 exp(−iϕ12(t)) + z∗

1z2 exp(iϕ12(t))] − G1(t)[z
∗
1 exp(iϕ1(t))

+ z1 exp(−iϕ1(t))] − G2(t)[z
∗
2 exp(iϕ2(t)) + z2 exp(−iϕ2(t))] − G(t)

}
dt. (3.22c)

If ω1(t) = ω1 and ω2(t) = ω2 are constants, from (3.22a) and (3.22b), we have

ε1 + ε2 = (ω1 + ω2)t. (3.23)

At t = 0, the initial state vector of the system is

|ψ(0)〉 = D̂1(z10)D̂2(z20)V̂ (ς0)
∑
n1,n2

Cn1n2 |n1, n2〉. (3.24)

Obviously, for the initial two-mode squeezed number states, |ψ(0)〉 = Ŝ(ξ0)|n1, n2〉, we have

z10 = z20 = ς0 = r120 = 0, (3.25)

where Ŝ(ξ0) is the two-mode squeeze operator defined by

Ŝ(ξ0) = exp
[
ξ ∗

0 â1â2 − ξ0â
+
1 â+

2

]
(ξ0 = s0 exp(iθ0), s0 > 0) (3.26)

for the initial two-mode squeezed coherent state |ψ(0)〉 = D̂1(α1)D̂2(α2)Ŝ(ξ0)|0, 0〉, we
obtain

z10 = α1, z20 = α2, ς0 = r120 = 0. (3.27)

In the general case, from (3.24), we have∑
n1,n2

Cn1n2 |n1, n2〉 = V̂ +(ς0)D̂
+
2(z20)D̂

+
1(z10)|ψ(0)〉. (3.28)

Substitution of expressions (3.21) and (3.28) into the state vector (3.16) results in

|ψ(t)〉 = exp(iσ)D̂1(z1)D̂2(z2)V̂ (ς)

× exp
[−i

(
ε1â

+
1 â1 + ε2â

+
2 â2

)]
V̂ +(ς0)D̂

+
2(z20)D̂

+
1(z10)|ψ(0)〉. (3.29)

Then, the time-evolution operator for quantum system is

Û (t, 0) = exp(iσ)D̂1(z1)D̂2(z2)V̂ (ς) exp
[−i

(
ε1â

+
1 â1 + ε2â

+
2 â2

)]
V̂ +(ς0)D̂

+
2(z20)D̂

+
1(z10).

(3.30)

In Heisenberg picture, the time evolution of arbitrary operator is given by

Â(t) = Û+(t, 0)Â(0)Û(t, 0). (3.31)
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4. The quantum fluctuations of the quadrature components of the output fields

In this section, we will consider the influence of the two coupled driven harmonic oscillators
on the quantum fluctuations of the output fields. It is useful to obtain the time evolution of the
annihilation operators. Using equations (3.6), (3.18) and (3.31), as well as following relation
(omitting its Hermitian conjugate format)

exp
[
i
(
ε1â

+
1 â1 + ε2â

+
2 â2

)]
âj exp

[−i
(
ε1â

+
1 â1 + ε2â

+
2 â2

)] = exp(−iεj )âj , (4.1)

we have

â1(t) = Û+(t, 0)â1Û (t, 0) = h1 + h11â1 + h12â2 (4.2a)

â2(t) = Û+(t, 0)â2Û (t, 0) = h2 + h21â1 + h22â2, (4.2b)

where âj (t) is the time-dependent Heisenberg annihilation operation, and

h11 = cos r12 cos r120 exp(−iε1) + sin r12 sin r120 exp[−i(ε2 + δ12 − δ120)] (4.3a)

h12 = sin r12 cos r120 exp[−i(δ12 + ε2)] − cos r12 sin r120 exp[−i(δ120 + ε1)] (4.3b)

h1 = z1 − h11z10 − h12z20 (4.3c)

h22 = cos r12 cos r120 exp(−iε2) + sin r12 sin r120 exp[i(δ12 − δ120 − ε1)] (4.3d)

h21 = cos r12 sin r120 exp[i(δ120 − ε2)] − sin r12 cos r120 exp[i(δ12 − ε1)] (4.3e)

h2 = z2 − h21z10 − h22z20. (4.3f )

The creation operators satisfy (4.2) by taking the Hermitian conjugate. We are now interested
in the variance of the individual quadrature phase amplitudes [9]

X̂j = {
âI

j (t) exp(iφ0j ) +
[
âI

j (t)
]+

exp(−iφ0j )
}/

2 (4.4a)

Ŷ j = {
âI

j (t) exp(iφ0j ) − [
âI

j (t)
]+

exp(−iφ0j )
}/

(2i) (4.4b)

and the two-mode quadrature phase amplitudes [9]

X̂ = {
âI

1 (t) exp[i(� + εt)] +
[
âI

2 (t)
]+

exp[−i(� − εt)] + h.c.
}/

23/2 (4.5a)

Ŷ = {
âI

1 (t) exp[i(� + εt)] − [
âI

2 (t)
]+

exp[−i(� − εt)] − h.c.
}/

(23/2i), (4.5b)

where � is the phase of the local oscillator in a homodyne detection scheme. âI
j (t) =

âj (t) exp(iωj t), ε = (ω2 − ω1)/2. Clearly, we have [X̂j , Ŷ j ] = i/2 and [X̂, Ŷ ] = i/2. It is
also not difficult to see that changing φ0j in (4.4a) or � in (4.5a), both by π/2, enables one to
transform one quadrature into another conjugate . Thus, in the following, we only focus our
attention on the quantum fluctuations of X̂j and X̂ quadratures.

If the system starts in the two-mode squeezed number state

|ψ(0)〉 = Ŝ(ξ0)|n1, n2〉 (4.6)

by using (3.23), (3.25), (4.2)–(4.5), together with the following relational expressions (omitting
their Hermitian conjugate formats)

Ŝ+(ξ0)â1Ŝ(ξ0) = â1 cosh s0 − â+
2 exp(iθ0) sinh s0 (4.7a)

Ŝ+(ξ0)â2Ŝ(ξ0) = â2 cosh s0 − â+
1 exp(iθ0) sinh s0, (4.7b)
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the quantum fluctuations (or variances) of X̂j and X̂ in the output fields are given by

(�X̂1)
2 = {(n1 − n2) cos 2r12 + (1 + n1 + n2)[cosh 2s0 − cos(δ12 − 2φ01

− θ0 + ω2t − ω1t) sin 2r12 sinh 2s0]}/4 (4.8a)

(�X̂2)
2 = {(n2 − n1) cos 2r12 + (1 + n1 + n2)[cosh 2s0 + cos(δ12 + 2φ02 + θ0

+ ω2t − ω1t) sin 2r12 sinh 2s0]}/4 (4.8b)

(�X̂)2 = [(n2 − n1) cos δ12 sin 2r12 + (1 + n1 + n2){cosh 2s0

− [cos 2r12 cos(2� + θ0) + sin 2r12 sin(2� + θ0) sin δ12] sinh 2s0}]/4. (4.9)

Clearly, (�X̂j )
2 and (�X̂)2 are periodic functions of r12, δ12, etc, and dependent on the pump

coupling parameters Q12(t) and ϕ12(t), but independent of the driving parameters Gj(t) and
ϕj (t)(see (3.13)). Usually a quantum state is defined squeezed if one of the variances of the
quadrature components is less than 1/4 (which is the quantum fluctuation of the vacuum). For
the variances above, when t = 0, using (3.25), we get

(�X̂1)
2 = (cosh 2s0 + 2n1 cosh2 s0 + 2n2 sinh2 s0)/4 > 1/4 (4.10a)

(�X̂2)
2 = (cosh 2s0 + 2n1 sinh2 s0 + 2n2 cosh2 s0)/4 > 1/4 (4.10b)

(�X̂)2 = (1 + n1 + n2)[cosh 2s0 − cos θ0 sinh 2s0]/4. (4.11)

Obviously, in the input fields, there is no squeezing in the two individual modes but in the
two-mode quadrature-phase amplitudes. On the other hand, from (4.8) and (4.9), it is easy to
see that the variances vary with interaction time. If n1 and/or n2 is large enough and s0 is small
enough, there is no squeezing in all the quadratures; moreover, since r12 and δ12 are time-
dependent functions determined by (3.13), there are always some time points which satisfie
cos(δ12 − 2φ01 − θ0 + ω2t − ω1t) sin 2r12 = 0, cos(δ12 + 2φ02 + θ0 + ω2t − ω1t) sin 2r12 = 0
in (4.8), and cos 2r12 cos(2� + θ0) + sin 2r12 sin(2� + θ0) sin δ12 = 0 in (4.9). This allows all
the variances being larger than 1/4 for arbitrary n1, n2 and s0. However, at more time points,
the expressions above are not equal to zero; in general, we can always find some time region
in which the expressions above equal and approximately equal ±1. Thus, as long as s0 is
large enough, regardless of what n1 and n2 equal, the squeezing occurs periodically in all the
quadratures and it can be interchanged between each pair of the conjugate components. So
we may conclude that, in some particular conditions, the time evolution of the two coupled
driven harmonic oscillators can not only preserve the initial two-mode squeezing, but will also
produce squeezing even though there is no initial squeezing in the two individual modes. Now
we again consider the quantum fluctuations of the output fields in a frequency converter in the
case of perfect energy matching. By inserting (3.14) into (4.8) and (4.9), we get

(�X̂1)
2 = {(n1 − n2) cos(2Q12t) + (1 + n1 + n2)

× [cosh 2s0 − sin(2φ01 + θ0) sin(2Q12t) sinh 2s0]}/4 (4.12a)
(�X̂2)

2 = {(n2 − n1) cos(2Q12t) + (1 + n1 + n2)

× [cosh 2s0 − sin(2φ02 + θ0) sin(2Q12t) sinh 2s0]}/4 (4.12b)

(�X̂)2 = [(n2 − n1) sin(2Q12t) sin ωt + (1 + n1 + n2){cosh 2s0 + [cos(2� + θ0) cos(2Q12t)

+ sin(2� + θ0) sin(2Q12t) cos ωt] sinh 2s0}]/4. (4.13)

In this case, (�X̂j )
2, which varies sinusoidally with time, is independent of the frequency of the

pump field ω. For some special parameter values, the squeezing can be generated periodically
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with period π/Q12. For example, when 2φ0j + θ0 = π/2, s0 > 1
2 ln(1 + n1 + n2), and t =

π/(4Q12), 5π/(4Q12), . . . , we have (�X̂1)
2 = (�X̂2)

2 = (1 + n1 + n2) exp(−2s0)/4 < 1/4.
However, (�X̂)2 exhibits a rapidly oscillatory behaviour at a high frequency ω. If 2� + θ0

equals 0 or π ; and n1 = n2 or |n1 − n2| is small enough, or n1 = n2 = 0 (which corresponds
to a initial squeezed vacuum state), we come to the same conclusion as above, namely, the
squeezing can be generated periodically with time at the frequency of 2Q12.

If the system starts in the two-mode squeezed coherent state

|ψ(0)〉 = D̂(α1)D̂(α2)Ŝ(ξ0)|0, 0〉 (4.14)

using (3.18c), (3.27), (4.2)–(4.5), (4.7) and (3.23), we obtain the variances of X̂j and X̂ as
follows:

(�X̂1)
2 = [cosh 2s0 − cos(δ12 + ω2t − ω1t − 2φ01 − θ0) sin 2r12 sinh 2s0]/4 (4.15a)

(�X̂2)
2 = [cosh 2s0 + cos(δ12 + ω2t − ω1t + 2φ02 + θ0) sin 2r12 sinh 2s0]/4 (4.15b)

〈�X̂2〉 = {cosh 2s0 − [cos 2r12 cos(2� + θ0) + sin 2r12 sin(2� + θ0) sin δ12] sinh 2s0}/4.

(4.16)

The most striking feature of (4.15) and (4.16) is that they are independent of the initial
values α1 and α2, and take the special forms of (4.8) and (4.9) respectively in the case of
n1 = n2 = 0. This indicates that the quantum fluctuations of the output fields for the initial
two-mode squeezed coherent state equal to those for the initial two-mode squeezed vacuum
state. For the frequency converter, (4.15) and (4.16) reduce to

(�X̂1)
2 = [cosh 2s0 − sin(2φ01 + θ0) sin(2Q12t) sinh 2s0]/4 (4.17a)

(�X̂2)
2 = [cosh 2s0 − sin(2φ02 + θ0) sin(2Q12t) sinh 2s0]/4 (4.17b)

(�X̂)2 = {cosh 2s0 − [cos(2� + θ0) cos(2Q12t) + sin(2� + θ0)

× sin(2Q12t) cos ωt] sinh 2s0}/4. (4.18)

Evidently, when 2φ0j + θ0 equal π/2 or 3π/2 in (4.17) and 2� + θ0 equal 0 or π in (4.18),
(�X̂1)

2, (�X̂2)
2 and 〈�X̂2〉 all exhibit periodical squeezing behaviour, the period and the

minimum are π/Q12 and exp(−2s0)/4 respectively.
In (4.6), if s0 = 0, we have |ψ(0)〉 = Ŝ(ξ0)|n1, n2〉 = |n1, n2〉. Thus, for the initial

two-mode number state, (4.8) and (4.9) reduce to

(�X̂1)
2 = (1 + 2n1 cos2 r12 + 2n2 sin2 r12)/4 (4.19a)

(�X̂2)
2 = (1 + 2n2 cos2 r12 + 2n1 sin2 r12)/4 (4.19b)

(�X̂)2 = [1 + n1(1 − cos δ12 sin 2r12) + n2(1 + cos δ12 sin 2r12)]/4. (4.20)

Clearly, for arbitrary n1, n2, r12 and δ12, the variances of all the quadrature phase amplitudes
above are all larger than 1/4. Therefore, there is no squeezing in this case.

In (4.14), if s0 = 0, we obtain |ψ(0)〉 = D̂1(α1)D̂2(α2)Ŝ(ξ0)|0, 0〉 = |α1, α2〉. Thus, for
the initial two-mode coherent state, (4.15) and (4.16) reduce to (�X̂j )

2 = (�X̂)2 = 1/4, so do
(�Ŷ j )

2 = (�Ŷ )2. Accordingly, there is no squeezing in all the quadrature-phase amplitudes
of the output fields either; and the system stays in a minimum-uncertainty state. The state of
the system therefore remains coherent.
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5. Summary and conclusions

Using Lewis–Riesenfeld invariant theory and selecting a suitable time-dependent unitary
transformation to the Hermitian operator K̂0 = ∑2

j=1 Cj â
+
j âj , we have obtained the state

vector and the time evolution operator for the two forced quantum oscillators with mixing of
two modes, and investigated the quantum fluctuation of the quadrature-phase amplitudes in
the output fields for various initial states. The following results are obtained.

(1) When the system starts in the two-mode squeezed number or squeezed coherent state, in
some particular conditions, the time evolution of the oscillators not only preserves the
initial two-mode squeezing, but also periodically produces squeezing in the individual
modes. Furthermore, the squeezing can be interchanged between each pair of the
conjugate components as the interaction time increases.

(2) The variances of the output fields for the initial squeezed coherent state |ψ(0)〉 =
D̂(α1)D̂(α2)Ŝ(ξ0)|0, 0〉 are independent of the initial values α1 and α2, and equal the
variances for the initial two-mode squeezed vacuum state.

(3) For the case of perfect energy matching in a frequency converter, whether the system starts
in a two-mode squeezed number state or a squeezed coherent state, for some specific values
of φ0j ,�, etc, all the variances may be independent of the frequency of the pump field
ω, vary sinusoidally with the interaction time, and exhibit a rather long periodical (with a
period π/Q12) squeezing behaviour since Q12 is generally small.

(4) When the system starts in the two-mode number state or in the two-mode coherent state,
the quantum fluctuation of all the quadrature phases in the output fields is not less than 1/4.
Hence, there is no squeezing in the individual and mutual quadrature-phase amplitudes
of the output two-mode fields.

(5) Whichever of the four states above the system starts in, the quantum fluctuations of all the
quadrature phases in the output fields are all independent of the driving parameters Gj(t)
and ϕj (t). In particular, for the initial two-mode coherent state, the variances of the output
fields preserve their initial values 1/4, and are also independent of other parameters in the
Hamiltonian Ĥ .

It should be noted that we have only derived a closed solution of the Schrödinger equation and
obtained a special solution of a frequency converter in the case of perfect energy matching
in this study. In a forthcoming paper, we will consider an explicit analytical solution for a
generalized frequency conversion process.
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